В книге собраны примеры остроумного применения линейной алгебры в различных областях математики - в основном в комбинаторике, геометрии и теории алгоритмов. Каждый раздел посвящён одному существенному результату, его мотивировке и доказательству. Для понимания требуется лишь некоторое знакомство с линейной алгеброй. Книга содержит немало признанных математических жемчужин, в том числе коды Хэмминга, матричную теорему о деревьях, границу Ловаса для ёмкости Шеннона и контрпример к гипотезе Борсука. Представлены и менее известные, но не менее замечательные результаты, среди них быстрая проверка ассоциативности, лемма Штейница об упорядочении векторов, теорема о невозрастающих целочисленных разбиениях и применение внешнего произведения при рассмотрении пар множеств. Сравнительно простые результаты из первых миниатюр дают богатый материал, заставляющий оживить в памяти вузовский курс линейной алгебры. Более трудные разделы можно использовать в курсе линейно-алгебраических методов для аспирантов.